If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+12x-87=0
a = 1; b = 12; c = -87;
Δ = b2-4ac
Δ = 122-4·1·(-87)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{123}}{2*1}=\frac{-12-2\sqrt{123}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{123}}{2*1}=\frac{-12+2\sqrt{123}}{2} $
| 0,5(4x+1)+2(2-0.5x)=(4,5-2,5x) | | 17v=280 | | -10y+10=-8-7y | | 4+6t=−20;t=−4 | | 17v=8.9 | | 8b+6=9b-7 | | (2x=43)(2x-3) | | -6(1-5x)=4x+3(4+8x) | | 23x-5=13x+5 | | -6m-2=-6m | | 8x+16x-12=246x+16-4 | | ½(6x-8)=41 | | 8b+6+102=180 | | 35=35+2-x | | 62,000+2,500r=68,000+1,000r | | p+4.6=7.8 | | 2(3k-1)-5k=-9 | | 3n+4=3n+11 | | 8b+6+102=`80 | | 0.6(x+20)=1+0.4(x-15) | | 5x+10+14x-6=175 | | (3/4w=12 | | 40x-168=1x | | 3.1x+5.4=7.1x-6.5x | | -4n+30=7(n-2) | | 13.3(a+7)=7–4a+7a | | 3x+57=84 | | 5n-15=4n-8 | | x/3+32=34 | | 4+1b+1.20=7.20 | | -9=2k-5k | | h+3(h-7)=19 |